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Thermally induced boundary-layer flows in a 
rotating environment 
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We consider, in this paper, boundary-layer flows which are induced when an 
isothermal rigid-body rotation is disturbed by heating the fluid. The basic 
rigid-body rotation is sustained by one or more rotating planes at which the 
temperature differences are initiated. Conditions of both uniform and unsteady 
heating are discussed. 

1. Introduction 
In  this paper we consider fluid motions which are induced by heating fluid 

which is initially in a rigid-body rotation. We consider situations in which the 
fluid, rotating with angular velocity a, is bounded by plane surfaces having the 
same angular velocity. This isothermal rigid-body rotation will be disturbed if 
the temperature of the boundary is changed, since changes in temperature will 
be accompanied by changes in density which will modify the effect of the pressure 
gradient and a radial flow develops. We confine our attention to fluids of small 
viscosity and consider only those cases in which the disturbance is effectively 
confined to the neighbourhood of the plate. Such flows will be described by the 
boundary-layer equations which may be further simplified if we assume a linear 
variation of viscosity with temperature. If T, is the temperature of the fluid in 
the isothermal rigid-body rotation and Tu, the wall temperature we shall be 
interested in cases where ITu,-- T,I 9 L2Qz/C,, L2R2/C, < 1 where L is a typical 
length and Cp the specific heat of the fluid. With this assumption we may neglect 
dissipative effects in the energy equation. Carrier (1966) has briefly considered 
the case when lTu,-Tml = O(L2Qz/Cp) 4 1 whilst Duncan (1966), using the 
Boussinesq approximation, has discussed flows driven by buoyancy forces when 
T, is non-uniform. We discuss separately three different cases. 

The first and simplest case concerns fluid bounded by the plane z = 0. For time 
t < 0 we have a rigid-body rotation with angular velocity R and at time t = 0 the 
temperature of the boundary is changed to a new uniform value T , .  Initially 
diffusion in the neighbourhood of the wall is the dominant process. However, as 
the fluid density changes a radial motion develops. If  T ,  > T, the less dense 
rotating fluid can no longer withstand the radial pressure gradient and moves 
radially inwards. As required by continuity an axial flow out from the boundary 
layer also begins to take place. Conversely, when the wall is cooled the heavier 
fluid in the neighbourhood of the rotating plane overcomes the radial pressure 
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gradient and begins to move outwards. This fluid is replaced by an axial flow 
into the boundary layer from the main body of fluid. These processes continue. 
Thus for the heated wall the combined effects of convection and diffusion of heat 
away from the wall mean that a steady state in which the disturbance is confined 
to the neighbourhood of the wall is not realized. However, for the cooled wall 
there is a balance between the convection and diffusion processes resulting in a 
local steady-state distortion of the original rigid-body rotation. This case is 
examined in some detail. When (T, - Tw)/Tm = E < 1 it  is shown that the radial 
motion is confined to a region of thickness O(v,/Q)&, where v is the kinematic 
viscosity, whereas the adjustment in temperature and angular velocity takes 
place over a region of thickness 0 [ ~ - ~ ( i ~ , / Q ) ~ ] .  For (T, - T,) /T,  = O(1) these two 
layers become indistinguishable with the disturbance extending over a region of 
thickness O ( v , / Q ) ~ .  

As a second example we consider a solid body rotation between two planes, 
a distance 2L apart, each rotating with angular velocity I2 which is disturbed, 
at  t = 0, by changing the temperature of each plate by the same amount, O(B)  
where 6 < 1. As in the previous case we confine most of our remarks to the case 
where the planes are cooled. Greenspan & Howard (1963) have considered the 
analogous problem when, for isothermal flow, the angular velocities of the planes 
are each increased by the same small amount. Following the initial development 
of boundary layers at each wall, as described in the previous paragraph, a process 
corresponding to the ‘spin-up’ described by Greenspan & Howard may be 
identified. Fluid moving out radially in the boundary layers is replaced by fluid 
from the inviscid, isothermal interior. It is shown that in a time O(R*Q-l), where 
R = Q P / v  is a Reynolds number, the angular velocity of the interior motion 
increases by an amount O(E)  and the radial flow decays. Temperature variations 
are still confined, for sufficiently large values of R, to thin boundary layers 
adjacent to the walls and there follows a diffusive mode in which the new iso- 
thermal (with temperature T,) rigid body rotation is established during a time 
O(RQ2-l). This contrasts with the workof Greenspan & Howard where the spin-up 
mode effectively establishes, in time O(R&Q-l),  the new steady state, with small 
residual effects decaying under the action of viscous forces in time O(BC2-l). 

As a final example we consider an oscillatory flow induced when the temperature 
of the plane bounding an isothermal rigid body rotation assumes the value given 
by (T, - Tm) = ET, cos wt where B < 1. An analogous motion induced by a pertur- 
bation angular velocity BQ cos wt superimposed upon the basic rotation has been 
considered by Benney (1965). The fluctuating velocities and temperature O(E)  are 
confined to the familar Stokes ‘shear-wave ’ layer of thickness O(v,/w)& if w < Q. 
However, if w > Q the disturbance extends over a region of thickness 

O[(v,/lw- 2Ql)+l. 

When w = 2Q a resonance phenomenon analogous to that exposed by Benney 
occurs and although the temperature fluctuations are confined to a region of 
thickness O( v,/w)*, the perturbation velocities penetrate into the interior fluid 
and we no longer have a local boundary-layer phenomenon. As is usual in 
fluctuating viscous flows of small amplitude (see Stuart 1963) steady components 
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of velocity and temperature O(e2) are present. Benney shows that in the case of a 
flow induced by an angular velocity perturbation there is, at  the edge.of the 
boundary layer, a steady suction towards the plane if w/Q 9 1 but if w / Q  < 1 this 
steady flow is directed away from the plane. In  the present case we show that at  
the edge of the boundary layer there is a rise in temperature O(e2T,,) which in 
turn leads to a steady flow away from the plane for all values of o/Q. Thus, only 
to O(e) do we have a local phenomenon. Heat is convected from the boundary 
with velocity O[e2(v,  Q)4] into the interior and the boundary conditions, as posed 
there, cannot be satisfied. We consider briefly a special case when the basic 
rotation is sustained not only by the plane z = 0 but also by a parallel, thermally 
insulated rotating plane at a finite distance from this. 

2. The boundary-layer equations 
The boundary -layer equations (momentum, energy, mass conservation and 

state) for unsteady, axi-symmetric flow of a viscous, heat conducting fluid of 
small viscosity over a plane surface may be written as 

p au -+u-+ au w---)  au ~2 =-ar+az(”az)’ ap a au 
at ar az r 

av av av uv 

( 
p (at -+u-+w-+- ar ax r ) = g ( p E ) ,  

2 = 0, az 

ap I a a 
- + - - (pru) + - (pw) = 0, at r ar az 

(3) 

(5) 

p = p R T .  (6) 

In these equations t represents time, r and z are measured radially over the plane 
and axially. The velocity components u, v and w are in the radial, azimuthal and 
axial directions respectively; p denotes pressure and T temperature. The density 
p and viscosity p are functions of T and we shall assume that the fluid is a gas in 
which pxT. 

The Prandtl number cr is assumed to be constant and O( 1). In  the energy equation 
(3) the terms representing work done by the pressure forces, and viscous dissipa- 
tion have been neglected, thus IT, - T, I 9 L2Q2/C,. The quantity C, is assumed 
to be constant. 

In  the problems considered in $9 3-5 the boundary z = 0 has a constant angular 
velocity Q about the axis r = 0. With the assumption (7 )  it is possible to simplify 
(1)-( 6) as follows. We first note that if the fluid a t  a large distance from the plane 
also has uniform angular velocity Q then we may write, by virtue of (3), 

( 7 )  

16-2 
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aplar = p, r f i2  where the subscript co denotes conditions in the interior of the 
fluid away from the boundary. We now introduce a co-ordinate Z defined by 

z = /;;az, 
and a stream function $ such that 

From the equation of continuity (5) we then have 

Thus, using (6), ( 7 ) ,  (8), (9) and (10) together withpp = const. = pap,, a conse- 
quence of ( 7 ) ,  the momentum and energy equations (1)-(3) may be written as 

(11) 

(12) 

a (lag)+---(--)-~--(--)--=--rQ i a g a  l a $  l a +  a lag 212 T 
% r z ,  r a Z a r  r a Z  r araZ r a z  r T, 

-+-- av ia$av i a g a v  l a $  a2v 
+ - - - ‘ U = t ,  ~ 

at r aZar r ar 8 2  r2aZ 822’ 

where t‘ = pip is the kinematic viscosity. We note in ( 1  1)  that the radial pressure 
gradient, represented by the first term on the right-hand side, is enhanced by the 
factor TIT,. If  the flow is isothermal with T = T, everywhere then a solution of 
(1 1)-( 13) is 

However, if we have a situation in which T =/= T, everywhere, as when for example 
the wall temperature T, is different from T,, then the balance between centri- 
fugal force and pressure force is destroyed with a consequent departure from the 
rigid-body rotation (14).  

In the examples which we consider below we are concerned, as already indi- 
cated, with plane surfaces perpendicular to which the axis of rotation of planes 
and fluid lies. It proves convenient to reduce equations (11)-(13) further by 

u = w = 0,  v = YQ. (14) 

writing 

where A is a parameter as yet unspecified but related to the temperature, T,,, of 
the plane. In terms of these new variables the momentum and energy equations 
become ( a ~ ’ / a 7 )  - 2 c  + A ( ~ ’ 2  - ~ F F ”  - ~ 2 )  = - o + 1~”’  (16) 

(17)  

(18)  

2 9  

(3Gla.r) + 2F‘ + 2A(P’G - Fa’) = +G”, 

(ae/aT) - UFO’ = - Y’, 1 
2 a  



Thermally iizduced boundary-lager flows 245 

where the primes denote differentiation with respect to q. At the solid boundary 
7 = 0 we shall require 

Other boundary conditions will be discussed in relation to the particular problem 
under consideration. 

F(0,7)  = F’(o,7) = G(0,7) = 0. (19) 

3. Uniformly heated plane 
In this section we consider the disturbance to an isothermal solid body rotation 

induced when the temperature of the plane z = 0 which bounds the fluid is 
changed, at 7 = 0, from T, to T,(1 & A )  where A > 0. We examine separately 
the initial development and the steady flow which is subsequently realized. The 
boundary conditions which supplement (I. 9) are 

(20) 

(21) 

I F = G = 8 = 0  (7=0 ,7>0) ,  

e(o,7) = 1 ( 7 >  o), 
F’(o0,7) = G(m,7) = O(o0,7)  = 0 ( 7 > 0 ) .  

For the initial development it is convenient to use independent variables 
(c, 7) where 

and to expand F ,  G and 8 as 
6 = r((T/27)*, 

(22) i 
F = 7$F0(c) + O(7%), 

G = 7’ G,(c) + o ( ~ ~ ) ,  
6 = e,(g) + O(7’). 

.We shall consider only the lowest order terms 8, and Po which satisfy 

8,” + 2c8, = 0,} 

6,(0) = i- 1, 8,(m) = 0, 
and (T~,y  + B ~ F ;  - 417; = 4(2/c)* e,, 

F,(O) = Fh(0) = Fh(m) = 0, 

where the primes now denote differentiation with respect to [. 
The solution of (23), which represents pure diffusion, is 

0, = erfc 5. 
Equation (24) now gives, for FA, 

One of the more interesting parameters from our point of view is F,(m) which is 
given from (26) as 

(27) 
F,(co) = F 4 2  

3(7T(T)B (&+ 1)’ 
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Thus, initially, when the temperature of the boundary is changed we have a 
diffusive process described by (25). As the temperature of the fluid changes so 
does its density and the fluid then begins to move radially as the balance which 
resulted in solid body rotation is destroyed. We see from (27) that, for all 
(T, Fo(co) < 0 when Oo(0) = 1 and Fo(co) > 0 when 00(0) = - 1. Thus when the wall 
is heated there is an outflow from the boundary layer as fluid flows in radially 
along the wall. Conversely, when the wall is cooled the heavier fluid near the wall 
flows out radially and is replaced from the main body of fluid. This is as we 
expect. 

With the main features of the flow for r < 1 exposed we turn now to the steady 
state which will be achieved when r B 1. We first consider the case when the 
temperature change is small and set A = E < 1. The steady state equations we 
must study are then given from (16)-( 18) as 

- 2G + e(F‘2- 2FF” - G2) = - 0 + BF‘“, 

2P’ + 24P’G- F G )  = BG”, 

( 2 8 )  

(29) 

- ~(TEFO’ = &Sf’, (30) 

together with boundary conditions (19) and those of (20) which are appropriate 
for large T.  The wall temperature is given by T, = Too( 1 i- E ) .  Since E < 1, we seek 
a solution of (28)-(30) in the form F(7, E )  = C e n F n ( ~ ) ,  etc. The first-order terms 
satisfy n=O 

- 2 6  0 -  - - Oo + $Ft)\ 

(31) 2F’ - 1G” 
0 - 2  0 ,  

0; = 0, 

(32) 
with Fo(0) = FA(0) = G,(O) = 0, 

F;(co) = G,(co) = O,(CO) = 0. 

Oo(0) = & 1, 

The solution of (31) satisfying the conditions a t  7 = 0 is 

The required solution is represented by the real parts of these expressions. We see 
that (34) and (35) cannot satisfy the conditions imposed at 7 = co. Consider first 
the case where the wall is heated. Equation (33) shows that there is outflow from 
the boundary layer at the wall and (34), (35) show that outside the boundary 
layer the fluid temperature is increased so that T = T,(1 + e )  everywhere, with 
a corresponding increase in the angular velocity necessary to maintain the rigid- 
body rotation. Clearly in this case diffusion of heat and vorticity from the wall 
will be reinforced by convection and the disturbance cannot be confined to the 
neighbourhood of the wall. The initial development of this procedure was 
observed in equations (25)-(27). 
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We now restrict our attention to the case when the wall is cooled. Equations (34) 
and (35) still indicate a change of O(E) in the temperature and angular velocity 
everywhere outside the boundary layer. However, equation (33) shows now that 
Fo(co) > 0 and there is a net flux of fluid into the boundary layer replacing the 
fluid which is flowing out radially over the plane. Thus we may expect a balance 
between convection and diffusion with the disturbance confined to the neigh- 
bourhood of the boundary. We see from (30) that the expansion procedure 
adopted has reduced in importance the term which represents convection 
towards the wall. The solution (33)-(35) may thus only be considered as an inner 
solution and there must be an outer region in which there is a balance between 
convection and diffusion. We must therefore develop a solution in this outer 
region which is complementary to, and matches with, the inner solution whose 
first term is given by (33)-(35). In  this outer region then, which is seen to be of 
thickness O(s-l) times the thickness of the inner boundary layer, we set 

(36) 

We seek a solution, as for the inner solution, of the form f ( 5 , ~ )  = C enf,(c), etc., 
of the equations satisfied by f, g and q5 namely 

1 p = f (0, fl = g(6), 6 = q5(5), 
where 5 = €7. 

n=O 

(37) 

(38) 
with boundary conditions 

together with the condition that the solution of (37) should match, as 5 -f 0, with 
the solution of (28)-(30) as 7 + co. The first-order terms satisfy, from (37), 

I - 2g - sg2 + E3( f ’2  - Zsf ” )  = - q5 + &3f I”, 

2f’ + 2€( f ’g  - f g ’ )  = +g”, 

- 20-fq5’ = +q5“, 

f ’(a) = = $(a) = 0, 

(39) 

(40) 

I 2go = $07 

f; = 0, 

q5;+40--f0q5; = 0. 

fo = 1/4 J2, 

The second of these gives, by matching with (33), 

and the solution for q50, which matches with ( 3 5 ) ,  is 

(41) q50 = - e-4142. 

The solution is completed by calculating go from the first of equations (39). This 
process, developing the inner solution governed by (28)-(30) and the outer 
solution by (37), may be continued with unknown constants being determined 
by matching as above. Thus the terms O(e)  in (28)-(30) yield, as equations for 
W7L Ql(7) and @,(7) 

(42)  

(43) 

J 
- 2G1 + (FA‘- 2F0 F;  - Gi)  = - 6,  + &Fr, 

2F;+2(F;G0-FoG6) = gal;, 
6; = 0, 

Fl(0) = F;(O) = Gl(0) = O1(O) = 0, with 
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and with the outer boundary conditions (20) replaced by the matching condition 
referred to  above. Solutions of (42) are 

8, = ay. (35 )  

a = 07/42. (46) 

The constant a, determined by matching with #n, is given by 

The function G, may be determined from the first of equations (42), in particular 

1 we have 
G;(O) = q (SF- 1). (47) 

From (37) we see that the next term in the outer solution is given from 

with boundary conditionsf;(oo) = g,(co) = #,(GO) = 0 together with the matching 
requirement. Substituting for the first-order functions f o ,  go and $o we see from 
the second of (48) t,hat f, is constant, its value is determined from matching with 
(44) as 

The function #, is now seen to satisfy 

f, = 7 /80  J2. (49). 

We see from the inner solution O(e) that the matching condition requires 
Ql(0) = 0 and hence C = 0 giving 

$1 = &g ,J2ce-dI42. (51) 

The solution to this order may be completed by calculating g, from the first of 
equations (48). The solution is not carried beyond this stage. 

For small values of A = (T, - T,)/T, we see that the characteristic features 
of the flow are as follows. An inner boundary layer of thickness O ( V , / ! ~ ) * ,  to 
which, effectively, the radial flow is confined and the temperature has the 
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uniform value T,, is embedded within a boundary layer of thickness 0[c1( vm/Q)*]. 
In  this outer region the temperature and angular velocity are adjusted to the 
values T, and i2 respectively. The values of the shear stress and heat transfer 
may be calculated from P”(O), G’(0) and S’(0) which are given, from (33), (34), 
(U), (45) and (47) as 

(52) I F(0) = 0.7071 + 0.03546 + O(s2), 

G’(0) = - 0.7071 + ( 0 . 3 5 3 6 ~ -  0.0707) E +  0 ( e 2 ) ,  

O‘(0) = 0 . 7 0 7 1 ~ ~  + O ( 8 ) .  

For values of A = O(1) we have used a Pohlhausen method to evaluate the 
main features of the flow. Equations (16)-(lS), for steady flow, are integrated 
from 7 = 0 to q = CQ to give 

20-AIom F‘Sdy = - &8’(0). 

In  conjunction with these equations we have assumed the following profiles, 
which satisfy the boundary conditions at the wall and at infinity, 

8 = -&I. 

The parameters A, p and S are to be determined from (53). The profiles (54) 
satisfy the linearized momentum equations for large y and reduce, effectively, 
to the correct forms when A < 1. However, when A < 1 we have seen that two 
length scales are involved and we cannot expect the Pohlhausen method outlined 
above to succeed. Consequently we have interpolated between the results of the 
approximate calculation and the results for A < 1. In  order to carry out this 
interpolation satisfactorily the calculation was extended to values of A outside 
the range of interest ( A  6 1). The results of such a calculation for o- = 1 are shown 
in figures 1-4. These show, in effect, a gradual merging of the twolayers discussed 
earlier together with a thinning of the total region to which the disturbance to the 
isothermal rigid-body rotation is confined. This latter result is shown in figure 4 
which is a measure of the thickness of this region in terms of the length scale 
(Il,/R)B. 

4. A ‘ spin-up ’ phenomenon 
In  this section we consider the disturbance to the isothermal rigid-body 

rotation between two parallel rotating planes a distance 2L apart when the 
temperature of each plane is changed from T, to T, at time t = 0. We shall show 
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that the final steady state is again an isothermal rigid-body rotation but with 
temperature T , .  

As in the previous example we pay most attention to the case in which the walls 
are cooled and restrict ourselves to the case (T, - T,)/Tm < 1. Thus at t = 0 the 
temperature of the walls is changed to Too( 1 - 6 ) .  Initially boundary layers of the 
type discussed in $ 3  develop on each plane. Thus radial outflow is confined to a 

0.7250 

0.7200 

h e. 
0.7150 

0.7 100 

0.7070 
0 2  0.4 0 6  0.8 1-0 

A 

FIGURE 1. The dependence of P”(0) on wall temperature when u = 1. 
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FIGURE 2. The dependence of C’(0) on wall temperature when (T = 1. 
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boundary layer of thickness O(R-:L) whilst temperature variations extend over 
a region of thickness O(e-lR-*L). Here R = QL2/v, is a Reynolds or Taylor 
number which is assumed to be sufficiently large so that s2R $ 1. The radial 
velocity in the inner boundary layer and inflow velocity to the boundary layer 
are O(eQL) and O(eQLR-4) respectively. Continuity then requires that, in the 

0.6 

h 

s 
B 

0.2 

0 0.2 0.4 0.6 08 1 *o 
A 

FIGURE 3. The dependence of @ ( O )  on wall temperature when (r = 1. 

0 0 2  0.4 0 6  0 8  1 -0 
A 

FIGURE 4. The boundary-layer thickness, on the scale (va/0)&, 
as a function of A when CT = 1. 
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inviscid, isothermal interior region the fluid has a radial inward component of 
velocity O(e0LR-4). Thus an annular ring of fluid moves radially inwards a 
distance O(eL) during a time O(R4Q-l) and since in the inviscid interior angular 
momentum is conserved, the angular velocity of the fluid must increase by an 
amount O ( e 0 ) .  In the problem considered by Greenspan & Howard (1963), where 
the angular velocity of the planes was increased by an amount O(sQ) ,  the ‘spin- 
up’ process described above was the main agency by which a new rigid-body 
rotation with angular velocity Q( 1 + e) was achieved. Small residual effects were 
found to decay under the action of viscosity in a time O(RQ-l) but the principal 
features of the new steady state appeared in a time O(R*Q-l). As we shall see 
below, for the present problem the main features of the new steady state are not 
a consequence of the spin-up mode but are established by a diffusive process in 
time O(RQ-l). 

Consider first the motion in the inviscid interior. With L as reference length 
r and 5 are dimensionless cylindrical polar co-ordinates measured from the axis 
of rotation and the plane of symmetry so that the rotating planes lie on 2 = f 1. 
We introduce a stream function $I defined by 

$z = eR-8L30xI, (55) 

so that the continuity equation (5) (with p = p,) is satisfied by 

We also write the azimuthal component of velocity 

v = L G (  1 + eGZ), 

v as 

(57) 

where 6, is to be independent of r. Since we are interested in the spin-up pheno- 
menon which takes place in a time O(R&-l) we choose as our dimensionless time, 
r ,  defined by 

Substituting (55)-(  58) into the inviscid, incompressible equations of motion we 
have, to lowest order, 

t = R*Oplr. ( 5 8 )  

1 ap 
(1+2eGI) = -- (59) r ar ’ 

where p = p, L2Qzp. Equations (59) and (60) then show that 

aczpz = 0, 

or GI = G ~ ( T ) .  
Equation (60) then gives 

X z  = -42-2 r (aQ1ja.r) + Xo(F ,  r ) ,  
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where xo is an arbitrary function of r and 7. The solution, to this order, is com- 
pleted following a discussion of the boundary-layer solution, We see from (59) 
that the varying interior angular velocity implies that a time-dependent radial 
pressure gradient is imposed upon the boundary layer. 

We turn now to the boundary-layer solution and for the lower plane we write 

z = - 1 + (2/R)i  7,  (64) 

where 7 is as defined in (15). With the stream function associated with the 
disturbance velocities (9) and (lo), the azimuthal velocity and the temperature 
given by 

$ = G L ~ L ~ ( ~ / R ) * ~ ~ F ( ? ,  T), 

v = QLr{l + s G ( r , ~ ) } ,  (65) i T = T,{1+ 4 7 ,  TI}, 
essentially asin (15), and with the dimensionless timegiven by (58) the boundary- 
layer equations (1)-(4) become, using (59) and retaining only the leading terms, 

(66,67,68)  2(GI - G )  + 0 = frP“, 4P‘ = G“, 0” + 4 ~ r ~ F 0 ’  = 0, 

together with (19) and 

~ ( O , T )  = - 1, P’(03,7) = 0(03,7) = 0, G ( ~ , T )  = G,. (69) 

The term O(e) in (68) has been retained in anticipation of the difficulty which 
occurred in 9 3. The boundary condition imposed on F f  at infinity recognizes the 
fact that the boundary layer and interior radial velocities differ by a factor 
O(R-*). The quantity 7 now only appears in (66)-(69) as a parameter. 

The first-order solution of (66)-(SS), corresponding to (33)-(35), may be 
written as 

J’ = - &r( 1 - i)  { - (1 + i) + ie-(l+O 427 + e-(1-0 4211 

G = - -  + Gz + 4 2  y{e-(l+i) 4 2  7 + e-(1 -i) 4 2  7 1, (70) 

where ~ ( 7 )  = (1 - 2G,)/4 4 2 .  ( 7 1 )  

0 =  - 1 ,  

As in 3 3 this solution, which does not satisfy the boundary conditions at infinity, 
may only be considered as an inner solution. The adjustment of angular velocity 
and temperature takes place in an outer boundary layer of thickness O(C-~R-~L) .  
In  the outer layer we introduce the variables (36) and the leading terms satisfy 

2(g - Gz) = $, f’ = 0, $”+ 4r~f$’ = 0, ( 7 2 )  

with f ’(03, 7) = $(a, 7) = 0, g(m, 7) = GI,  together with the condition that the 
solution of (72) must match with the inner solution (70) .  The solutions of ( 7 2 )  are 
thus obtained as 

f = y ( ~ ) ,  g = G1(7) - 4 e-4gy6, $ = - e - 4 4 .  (73) 

A boundary layer with similar characteristics develops on the plane X = 1 .  
The solution is completed when we have determined GI(7). This we do by 
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matching the axial velocities of the boundary layers and interior flows. Consider 
first the boundary layer associated with Z = - 1. From (56) and (63), as X + - 1,  

whilst from (S), (lo),  (58), (65) and ( 7 3 ) ,  as 7 + co, 

w N - 2  ~ / ~ I z L Q R - * ~ ( T ) .  

Consequently, if these two expressions are to agree 

This matching condition when applied to the boundary layer on 5 = 1 gives 

l-ZG, aG, lax, ___ - 
2 a7 r a r m  (75) 

Together (74) and (75) give, as the equation for G I ,  

( a c , / a T ) + ~ ,  = 4, (76) 

and if we apply the condition that as 7 -+ 0, G, -+ 0 so that solutions (70) and ( 7 3 )  
match with (33)-(35), (40) and (41) then 

GI = i ( 1 -  e 9 .  (771 

We see then, from equations (70)-(77), that after a time O(RtQ-l) the radial 
flow, which was initially established in boundary layers of thickness O( R-*L), 
decays. The flow pattern now consists essentially of an interior motion, occupying 
most of the flow field, in which we have an isothermal rigid-body rotation with 
temperature T, and angular velocity Q( 1 + @) together with boundary layers of 
thickness O(a-1R-ty-lL) at Z = 5 1 (which remain thin as long as 7 < loge2R) 
through which the temperature and angular velocity are adjusted to their 
boundary values T ,  and 0. The process by which a new isothermal steady state 
of solid body rotation with temperature Tw and angular velocity Q is now 
established is one of diffusion from the boundaries. This diffusive process takes 
place in a time O(RQ-1). In  the problem considered by Greenspan & Howard the 
final steady state was effectively reached in a time O(R4Q-l) with small residual 
effects, not revealed by the present boundary-layer analysis, finally decaying 
under the action of viscous diffusion in a time O(RC2-l). As indicated by Greenspan 
& Howard the above analysis will not require modification if vertical side walls 
are present a t  a radial distance D, except in the immediate neighbourhood of 
these walls, provided that LID < Rf. 

Suppose now that the wall temperatures are increased by an amount ET, at 
t = 0 so that T, = T,( 1 + 8 ) .  We have seen in § 3 that heat is convected away from 
the boundaries into the interior by velocities O(eR-:LQ). Consequently during 
the spin-up mode the effects of wall heating will have penetrated to a depth O ( d )  
from the boundaries. Thus again the final rigid-body rotation will be established 
in a time O(RC2-l) by diffusive processes. 
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5. An oscillatory motion 
We discuss finally an oscillatory flow which is superimposed upon the rigid- 

body rotation when the plane z = 0,  in otherwise unbounded fluid, has a wall 
temperature 

where e Q 1. An oscillatory motion induced by superimposing a small harmonic 
oscillation upon the basic rotation of the plane has recently been considered by 
Benney (1965). 

In  this case there is a new viscous length scale (v,/w)* in addition to the length 
scale (v,/Q)h. In the familiar examples of oscillatory viscous flows (see Stuart 
1963) of small amplitude, the first-order fluctuations are confined to a shear-wave 
layer of thickness O(V,/OJ)*. Here we shall see that the disturbance may penetrate 
outside such a shear wave layer. In Benney's work neither of the above length 
scales appear explicitly. 

We define our variables as in $ 2  with A = 8 except that in view of (78) we 
choose w1 as a reference time. The equations satisfied by F ,  G and 8 are given by 
(1  6)-( 18) except that the time derivative terms now have coefficient 

(78) Tu, = T , ( ~ + E c o s u ~ ) ,  

a = wfQ. (79) 

In  order to minimize the manipulative details we consider only the case v = 1. 
The boundary conditions are as in (19) and (20) except that we now require 

19(0,7) = ei'. (80) 

We again seek a perturbation solution as a series in powers of E with the first 

With (80) in mind we seek solutions of equations (81) in the form 

FO(% 7) = Fo,(r) ei', etc. 

The functions Fol, Go, and OOl which satisfy the appropriate boundary conditions 
are found to be 

i i F - - ( l - e - m z ? ) - -  (1 - e-mi q ) ,  

G - 1 - ( l + O d a q - I  mlq 

O1 - 4m, 4% 

01 - 2 e  4(  - +e-mzq), 
6 - e-(l+i' d a v ,  
01 - 

where, with positive real parts, m, and mz are given from 

(82) 
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We see, from (791, (82) and (83) that, regardless of the value of a, first-order 
temperature fluctuations are indeed confined to a shear-wave layer of thickness 
O(v,/w)a. If w < Q the total disturbance is confined to this region. However, if 
w > Q velocity fluctuations persist outside this layer and extend to a distance 
O(vw/ lw-2sL()~ .  If w = 2Q we have the resonance phenomenon observed by 
Benney when velocity fluctuations are no longer confined to thin boundary layers 
adjacent to the plane z = 0. 

We consider now second-order effects which contain not only fluctuating 
quantities of twice the applied oscillation frequency but also steady terms. The 
appearance of these steady terms is consistent with the general theory of oscil- 
latory, small amplitude viscous flows (Stuart 1963). We thus write our dependent 
variables in the form 

Consider first the second-order solution 8, for the temperature which satisfies 
F1(~,7) = %(T) + F ~ T )  eZi7, etc. (84) 

a(a0,p.r) - 40; = 2P0 e;, (85)  

with 0,(0) = 8,(co) = 0. (86)  

The term 8,, derived from this represents a decaying oscillation. However the 
steady part persists and the solution shows that a t  the edge of the boundary layer 
we have 

There is a corresponding persistence of angular velocity. The calculation of F ,  is 
a formidable task and we confine our comments here to the value of Pl0(co). This 
quantity determines, in particular, the nature of the induced steady flow at the 
edge of the boundary layer. Benney in his work discussed three limiting cases and 
showed, in the present notation, that 

(88) i 
- 3  Jape as a+O; i 4 1 4 a  as a+m. 

l i lo (~)  N - (29 J2 - 30)/34 as 01 + 2 ;  

Thus, for sufficiently large values of a there is a suction velocity at the edge of the 
boundary layer, otherwise there is an outflow from the boundary layer. We have 
considered in detail only the equivalent of the last of these which shows, that as 
01 -+ GO, Flo(co) - - ,/2/16a2. Thus in contrast to  Benney’s result we have, in this 
case, outflow from the boundary layer. That we may expect such an outflow from 
the boundary layer for all values of a may be inferred from (87). This equation 
shows that for all a, Blo(c0) > 0 and so at the edge of the boundary layer a steady 
temperature in excess of T, by an amount O(@TW) persists. The work of 0 3 shows 
that with such a rise in temperature we may associate an outflow from the 
boundary layer with outflow velocities O[(v, Q)4e2]. Thus heat is convected into 
the interior and only to O(E)  is the disturbance confined to the neighbourhood of 
the plane z = 0. 
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Let us suppose that the basic rigid-body rotation involves a second plane 
rotating with angular velocity Q at z = L. Let us also suppose that this plane is 
thermally insulated with an artificially applied suction velocity corresponding to 
Fol(m) eir.  In  this way we isolate, at  the upper plane, the difficulty associated 
with the steady streaming by ensuring that there is no interaction between it and 
the oscillatory motion O(B) .  It is clear from the work of 0 3 that at the upper plane 
there will be an outer boundary layer of thickness O[B:-Z(V,/Q)*] through which 
the temperature and angular velocity change. Embedded within this is a layer of 
constant temperature of thickness O(vm/Q)* in which there is a radial outflow 
and the velocities are adjusted to satisfy the no-slip condition on the plane 
2 = L. A t  the plane z = L a temperature T,( 1 + O(e2)) will be recorded. 

This work was performed with the sponsorship of the United States Air Force 
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